We propose a simplified approach to matching for causal inference that simultaneously optimizes both balance (between the treated and control groups) and matched sample size. This procedure resolves two widespread tensions in the use of this powerful and popular methodology. First, current practice is to run a matching method that maximizes one balance metric (such as a propensity score or average Mahalanobis distance), but then to check whether it succeeds with respect to a different balance metric for which it was not designed (such as differences in means or L1).more...See more text